Mit dem "Lab on a chip" Halbleitermaterialien analysieren

Mehrere Forschungseinrichtungen entwickeln eine miniaturisierte EPR-Messvorrichtung, um Halbleitermaterialien, Solarzellen, Katalysatoren und Elektroden für Brennstoffzellen und Batterien zu untersuchen. Das „Lab on a Chip“ wird einen Technologiesprung in der Elektronenspinresonanz (EPR) ermöglichen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „EPR-on-a-Chip“ mit 6,7 Millionen Euro.

Die Elektronenspinresonanz bzw. elektronenparamagnetische Resonanz (EPR) liefert über die Anregung von Elektronenspins im Material detaillierte Information über dessen innere Struktur, bis hinunter auf die atomare Ebene. EPR-Spektroskopie ist ein wichtiges Instrument in der Biophysik, Chemie und medizinischen Diagnostik, wird mittlerweile aber auch in der Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellenkomponenten eingesetzt.

Allerdings sind EPR-Spektrometer üblicherweise große und teure Geräte, die nur in besonders gut ausgestatteten Forschungslaboren zu finden sind. Zudem ist es mit konventionellen EPR-Geräten sehr schwierig, Untersuchungen unter realen Prozessbedingungen (operando-Messung) durchzuführen.

Doch es geht tatsächlich auch anders: Eine erste Demoversion eines miniaturisierten EPR-Spektrometers wurde bereits 2017 vorgestellt. Im Rahmen des BMBF-Projekts „EPRoC" soll nun eine Chip-basierte elektronenparamagnetische Resonanzspektroskopie (EPRoC) entwickelt werden, die diese systembedingten Nachteile für operando-Untersuchungen nicht mehr hat.

EPR-Chip kann sogar im Inneren der Probe platziert werden

Das EPR-Spektrometer wird dabei auf Chip-Größe miniaturisiert, so dass es sogar ins Innere der Probe eingeführt werden kann. Ziel ist es, mit Hilfe der EPRoC direkt Wachstumsprozesse von Dünnschichten für die Photovoltaik zu analysieren sowie katalytische Vorgänge während der Herstellung von solarem Wasserstoff zu untersuchen und zu verbessern. Dadurch ließe sich aufklären, wie die Strukturbildung auf der Nanoskala mit der Funktionalität der Prozesse und Materialien zusammenhängt.

Diese Technologie könnte auch andere analytische Verfahren verbessern

Während der dreijährigen Laufzeit des Projekts wollen die Partner das Potenzial der Technologie erschließen, indem sie die Effizienz der Prozesse und Bauelemente weiter verbessern und die Kosten senken. Zusätzlich wollen sie die EPRoC-Technik nutzen, um die Empfindlichkeit der Kernspinspektrometer (NMR) deutlich zu verbessern. Dies könnte sich langfristig auch auf die in der Medizin eingesetzte Magnetresonanztomographie auswirken.

Die Erkenntnisse sollen dafür sorgen, dass die EPRoC-Technologie innerhalb der nächsten zehn Jahre weiter entwickelt werden kann. Die Miniaturisierung der EPR wird neue Anwendungsgebiete erschließen und kann zu rascheren Fortschritten in der Energiematerialforschung, Sensorik, Medizin, Umwelttechnik, sowie der Lebensmittel- und analytischen Chemie führen.